ACTIVIDAD FOTOQUÍMICA DE CLONES ÉLITES DE CACAO (THEOBROMA CACAO L.) ECUATORIANO EN EL NORTE DE LA PROVINCIA ESMERALDAS

Wilmer Tezara Tezara, J. De Almeida De Almeida, E Valencia Valencia, J.L. Cortes Cortes, M.J. Bolaños Bolaños

Resumen


Con el objetivo de conocer la eficiencia de captación y transferencia de energía lumínica en hojas de cacao (Theobroma cacao L.) e identificar clones élites con un buen desempeño fisiológico durante la estación lluviosa, se evaluó el contenido de agua foliar (CAF), área foliar específica (AFE) y la eficiencia fotoquímica del fotosistema II (PSII) a través de medidas de fluorescencia de la clorofila a (Cl a), en 17 clones nacionales, provenientes de una selección de híbridos en la Estación Experimental Tropical de Pichilingue (Ecuador) y 3 clones criollos, cultivados en dos diferentes ensayos, ubicados en la finca de la Asociación de productores de cacao de Colón Eloy (CE) y en San Agustín (SA) al Norte de la Provincia Esmeraldas, Parroquia de Colón Eloy, Cantón Eloy Alfaro. Se discuten aspectos relacionados con la tasa de transporte de electrones (J), eficiencia cuántica máxima (Fv/Fm) y relativa del PSII (PSII), coeficiente de extinción fotoquímica (qP) y no fotoquímica (qN) y se comparan con resultados obtenidos con cultivares de cacao venezolano, en términos del requerimiento lumínico del cultivo cacao. Se concluyó que los clones de cacao ecuatoriano estudiados, cultivados a plena exposición solar (SA), redujeron significativamente el AFE y Fv/Fm, mostrando aclimatación morfoanatómica y regulación descendente del aparato fotoquímico, lo que constituye una evidencia de la aclimatación a diferentes condiciones lumínicas.

Palabras clave: Aclimatación, área foliar específica, cacao criollo, eficiencia cuántica, fluorescencia


Texto completo:

PDF

Referencias


Larcher W. 1995. Physiological Plant Ecology. En: Ecophysiology and Stress Physiology of Function Groups (3rd edition). Springer Verlag. Berlin-Heidelberg.

Bazzaz F, Morse S. 1991. The Response of Annual Plants to Multiple Stresses. Winnert W, Pell E, Mooney HA, (Eds.). San Diego (California), pp 283-299.

ICCO. 2015. Quarterly Bulletin of Cocoa Statistics, Vol. XXXIX, No. 2, Cocoa year 2014/15. http://www.icco.org

Sistema de Información Nacional de Agricultura, Ganadería, Acuacultura y Pesca (SINAGAP) 2014. http://sinagap.agricultura.gob.ec

Food and Agriculture Organization of the United Nations (FAO). 2010.

www.fao.org/home

Almeida A, Valle R. 2007. Ecophysiology of the cacao tree. Brazilian J. Plant Physiology 19: 425-448.

Motamayor JC, Risterucci AM, Lopez PA, Ortiz C.F., Moreno, A., and Lanaud C. 2002. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity 89, 380–386.

Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ. 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE 3: 1–8.

Escobar R. 2008. Comportamiento de seis clones de “cacao” (Theobroma cacao L.) en Guasaganda, provincia de Cotopaxi, Ecuador. La Granja 7(1): 9-12.

Loor R, Amores F. 2003. Explorando la variabilidad del cacao tipo Nacional para identificar clones elite. Revista Sabor Arriba 2(4): 18–19.

Wood GAR, Lass RA. 1959. El cacao en el Ecuador. En: Notes on Three Cocoa Diseases, Cocoa Growing in Venezuela, Colombia, and Ecuador. Cadbury Brothers Ltd. Bournville, USA. pp. 35-52.

Baligar V, Bunce J, Machado R, Elson M. 2008. Photosynthetic photon flux density carbon, dioxide concentration and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 46: 216-221.

Liang N, Tang Y, Okuda T. 2001. Is elevation of carbon dioxide concentration beneficial to seedling photosynthesis in the understory of tropical rain forests? Tree Physiology 21: 1047-1055.

Jaimez R, Tezara W, Coronel I. 2008. Ecofisiología del cacao (Theobroma cacao): su manejo en el sistema agroforestal. Sugerencias para su mejoramiento en Venezuela. Revista Forestal Venezolana 52(2): 253-258.

Huxley P. 2001. Multipurpose trees: biological and ecological aspects relevant to their selection and use. En: Tree Crop Ecosystems. Last F. (Ed.). Elsevier, Amsterdam pp: 19-74.

Matos F, Wolfgramm R, Gonçalves F, Cavatte P, Ventrella M, DaMatta F. 2009. Phenotypic plasticity in response to light in the coffee tree. Environmental and Experimental Botany 67: 421-427.

Fahl J, Carelli M, Vega J, Magalhães A. 1994. Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). Horticultural Science & Biotechnology 69: 161-169.

Araque O, Jaimez RE, Tezara W, Coronel I, Urich R, Espinoza W. 2012. Comparative photosynthesis, water relations, growth and survival rates in juvenile Criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Experimental Agriculture 48, 513–522.

Ávila-Lovera E, Coronel I, Jaimez R, Urich R, Pereyra G, Araque O, Chacón I, Tezara W. 2016. Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture 52: 137-153 doi: 10.1017/S0014479714000593.

Tezara W, Urich R, Jaimez R, Coronel I, Araque O, Azócar C, Chacón I. 2016. Does Criollo cocoa have the same ecophysiological characteristics than Forastero? Botanical Sciences in press.

Pinheiro HA, Damatta FM, Chavez AM, Loureiro ME, Ducatti C. 2005. Drought Tolerance is Associated with Rooting Depth and Stomatal Control of Water Use in Clones of Coffea canephora. Annals of Botany 96: 101–10.

Martins SCV, Galmés J, Cavatte PC, Pereira LF, Ventrella MC, DaMatta FM. 2014. Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. Plos ONE 9, 1–10.

Farquhar GD, von Caemmerer S. 1982. Modeling of photosynthetic responses to environmental conditions. En: Lange, O.L., Nobel, P.S., Osmond, C.B., Zeigler, H. (Eds.). Physiological Plant Ecology II. Encyclopedia of Plant Physiology, new series, Vol. 12B, Springer-Verlag, Heidelberg. Pp. 550-587

Wang K, Kellomäki S. 1997. Effects of elevated CO2 and soil-nitrogen supply on chlorophyll fluorescence and gas exchange in Scots pine, based on a branch-in-bag experiment. New Phytologist 136: 277-286.

Genty B, Briantais JM, Baker NR. 1989. The relationships between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.

Krause GH, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: The basics.Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349.

Joly R, Hahn D. 1989. Net assimilation of cacao seedlings during periods of plant water deficit. Photosynthesis research 21:151-159.

Balasimha D, Daniel E, Bhat P. 1991. Influence of environmental factor on photosynthesis in cocoa trees. Agriculture Forest Meteorology 55:15-21.

DaMatta F, Ronchi C, Barros R, Maestri M. 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19: 485-510.

Tezara W, Coronel I, Urich R, Marín O, Jaimez R, Chacón I. 2009. Plasticidad ecofisiológica de árboles de cacao (Theobroma cacao L.) en diferentes ambientes de Venezuela. En: III Congreso Latinoamericano de Ecología y IX Congreso de Ecología de Brazil. Sâo Lorenço pp: 1-5.

Krall JP, Edwards GE. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 86: 180-187.

Porras V, Sánchez L. 1991. Enfermedades del cacao. En: Fundación Hondureña de investigación agrícola, La Lima, Cortés, Honduras pp: 7-27.

Daymond A, Tricker P, Hadley P. 2011. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biologia Plantarum 55 (1): 99-104.

Lambers H, Chapin I, Pons T. 1998. Plant Physiological Ecology. Springer-Verlag, New York pp: 540.

Walters R. 2005. Towards an understanding of photosynthetic acclimation. Experimental Botany 56: 435-447.

Maxwell K, Johnson G. 2000. Chlorophyll fluorescence a practical guide. Journal of Experimental Botany 51: 659–668.

Bilger W, Schereiber U, Bock M. 1995. Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102 (4): 425-432

Huner N, Öquist Hurry N, Krol M, Falk S, Griffith M. 1993. Photosynthesis, photoinhibition and low-temperature acclimation in cold tolerant plants. Photosynthesis Research 37: 19-39.

Osmond C. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants. En: Baker N.; Bowyer J. (eds). Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. BIOS Scientific Publishers Oxford pp: 1-24.

Moraes G, Chaves A, Matins S, Barros R, DaMatta F. 2010. Why is it better to produce coffee seedlings, a plant native to shaded habitats in full sunlight than in the shade? Photosynthetica 48(2): 199-207.

Demmig-Adams B, Adams W, Baker D, Logan B, Bowling D. Verhoeven AS. 1996.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264.

Thiele A, Krause G, Winter K. 1998. In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plant growing in natural gaps of the tropical forest. Australian Journal of Plant Physiology 25: 189-195.

Mittler R. 2002. Oxidative stress antioxidants and stress tolerance. Trends in Plant Science 7: 405-410.

Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review, Plant Physiology and Plant Molecular Biology 50: 601-639.

Demmig-Adams B, Adams W. 2006. Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation. New Phytologist 172: 11-21.

Adams W, Zarter C, Ebbert V, Demmig-Adams B. 2004. Photoprotective strategies of overwintering evergreens. Bioscience 54: 41-49.

Bae H, Kim S-H, Kim MS, Sicher RC, Strem MD, Natarajan S, Bailey, BA. 2008. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiology and Biochemistry 46: 174–188.

Laisk A, Oja, V, Rasulov B, Eichelmann H, Sumberg A. 1997. Yields and Rate Constants of Photochemical and Nonphotochemical Excitation Quenching (Experiment and Model). Plant Physiology 115: 803-815.


Enlaces refback

  • No hay ningún enlace refback.


Revista cuatrimestral